首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16090篇
  免费   809篇
  国内免费   1209篇
林业   987篇
农学   776篇
基础科学   505篇
  8723篇
综合类   5177篇
农作物   742篇
水产渔业   14篇
畜牧兽医   677篇
园艺   374篇
植物保护   133篇
  2024年   74篇
  2023年   253篇
  2022年   344篇
  2021年   380篇
  2020年   347篇
  2019年   411篇
  2018年   319篇
  2017年   572篇
  2016年   740篇
  2015年   708篇
  2014年   852篇
  2013年   864篇
  2012年   1079篇
  2011年   1368篇
  2010年   1032篇
  2009年   1159篇
  2008年   1122篇
  2007年   1162篇
  2006年   1000篇
  2005年   819篇
  2004年   555篇
  2003年   475篇
  2002年   284篇
  2001年   242篇
  2000年   232篇
  1999年   228篇
  1998年   208篇
  1997年   188篇
  1996年   197篇
  1995年   175篇
  1994年   136篇
  1993年   130篇
  1992年   108篇
  1991年   78篇
  1990年   106篇
  1989年   45篇
  1988年   47篇
  1987年   46篇
  1986年   13篇
  1985年   7篇
  1978年   1篇
  1963年   1篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 453 毫秒
111.
Both environmental and climatic changes are known to influence soil microbial biomes in terrestrial ecosystems. However, there are limited data defining the interactive effects of multi-factor environmental disturbances, including N-deposition, precipitation, and air temperature, on soil fungal communities in temperate forests. A 3-year outdoor pot experiment was conducted to examine the temporal shifts of soil fungal communities in a temperate forest following N-addition, precipitation and air temperature changes. The shifts in the structure and composition of soil fungal communities were characterized by denaturing gradient gel electrophoresis and DNA sequencing. N-addition regimen induced significant alterations in the composition of soil fungal communities, and this effect was different at both higher and lower altitudes. The response of the soil fungal community to N-addition was much stronger in precipitation-reduced soils compared to soils experiencing enhanced precipitation. The combined treatment of N-addition and reduced precipitation caused more pronounced changes in the lower altitude versus those in the higher one. Certain fungal species in the subphylum Pezizomycotina and Saccharomycotina distinctively responded to N fertilization and soil water control at both altitudes. Redundancy discrimination analysis showed that changes in environmental factors and soil physicochemical properties explained 43.7% of the total variability in the soil fungal community at this forest ecosystem. Variations in the soil fungal community were significantly related to the altitude, soil temperature, total soil N content (TN) and pH value (P < 0.05). We present evidence for the interactive effects of N-addition, water manipulation and air temperature to reshape soil fungal communities in the temperate forest. Our data could provide new insights into predicting the response of soil micro-ecosystem to climatic changes.  相似文献   
112.
Cover crop use can help mitigate the deleterious effects of common cropping practices (e.g., tillage) and is, therefore, an important component of soil health maintenance. While known to be beneficial in the long-term, the short-term effects of cover crops, specifically mixed-species cover crops in organic systems are less clear. Cover crop effects on tomato productivity and disease severity were recorded over three field seasons (2010, 2011 and 2012) at sixteen field sites in three states, Maryland, New York and Ohio (MD, NY and OH), each with distinct soilborne disease pressure. Plots of five state-specific cover crop treatments were established the season prior to tomato production; the resulting plant residue was incorporated the following spring approximately four weeks before tomato planting. Total fruit yields along with early-season shoot height and fresh weight were used to compare treatment effects on productivity. Treatment disease severity ratings relied on natural inoculum. Interestingly, the effect of a single season of cover cropping on total yield was significant in no more than 25% of all site years. Similarly, cover crop effects on tomato disease levels were significant in 0–44% of the sixteen field sites. However, significant field-specific patterns were observed in every state across multiple years for some treatments. For example, in New York in 2010, tomato yields following all mixed cover crops were greater than the single rye cover crop in one field, but this pattern was reversed in the adjacent field. Thus, no general recommendation of a specific cover crop mixture can be made for near-term enhancement of tomato productivity or for reduction of disease. Therefore, growers should focus on location and operation-specific variables when choosing cover crops.  相似文献   
113.
[目的]基于理论推导建立凸齿镇压器作业过程中的运动学和动力学模型。[方法]根据运动学中刚体做平面运动的瞬心定理和牵连运动为平动时质点的加速度合成定理,建立凸齿镇压器在不同工作阶段的运动参数模型;根据动力学中的动量定理、动能定理和冲量定理,建立凸齿镇压器工作状态中所需牵引力、凸齿与地面作用瞬间产生的冲击力和冲击能的参数模型。[结果]凸齿镇压器作业过程中所需的牵引力随着凸齿镇压器的自身质量和滚动阻力系数的增加而增大,而凸齿镇压器转动惯量的增加会降低凸齿镇压器所需牵引力;冲击过程中,凸齿镇压器的牵引速度越大、质量和转动惯量越大、冲击时间越短,则冲击力越大;凸齿镇压器冲击土壤时的冲击能随着凸齿的转动惯量、质量和质心竖直向下移动距离的提高而增加,而随土壤的弹性系数与土壤的塑性变形量的增加而减小。[结论]建立了凸齿镇压器在不同工作状态下运动学及动力学模型,分析并揭示了凸齿镇压器结构参数与运动参数间的相互联系,探索了凸齿镇压器冲击土壤的特征规律,为设计和优化其结构参数和运动参数提供了理论依据。  相似文献   
114.
The response of the soil food web structure to soil quality changes during long-term anthropogenic disturbance due to farming practices has not been well studied. We evaluated the effects of three tillage systems: moldboard plow/rotary harrow (MP), rotary cultivator (RC), and no-tillage (NT), three winter cover-crop types (fallow, FL; rye, RY; and hairy vetch, HV), and two nitrogen fertilization rates (0 and 100 kg N ha−1 for upland rice, and 0 and 20 kg N ha−1 for soybean production) on changes in nematode community structure. Sixty-nine taxa were counted, total nematode abundance (ALL), bacterial feeders (BAC), predators (PRD), omnivores (OMN), and obligatory root feeders (ORF) were more abundant in NT than in MP and RC, but fungal feeders and facultative root feeders (FFR) were more abundant in RC than in NT and MP. Cover crop also influenced nematode community structure; rye and hairy vetch were always higher in ALL, BAC, FFR, ORF, and OMN than fallow. Seasonal changes in nematode community structure were also significant; in particular, as soil carbon increased, nematode abundance also increased. The relationship between nematode indices and soil carbon was significant only in NT, but not in MP and RC. In NT, with increasing soil carbon, enrichment index and structure index (SI) were positive and significant and channel index was negative. Bulk density was significantly negatively correlated with FFR and ORF. Seasonal difference in nematode community between summer and autumn was larger in an upland rice rotation than in a soybean rotation. Over the nine-year experiment, SI increased not only in NT but also in MP and RC, suggesting that repeated similar tillage inversions in agroecosystems may develop nematode community structures adapted to specific soil environmental conditions. Because NT showed the highest values of both SI and soil carbon, the increase of soil carbon in NT is expected to have a great impact on developing a more diverse nematode community structure.  相似文献   
115.
The SALTIRSOIL model predicts soil salinity, sodicity and alkalinity in irrigated land using basic information on soil, climate, crop, irrigation management and water quality. It extends the concept of the WATSUIT model to include irrigation and crop management practices, advances in the calculation of evapotranspiration and new algorithms for the water stress coefficient and calculation of electrical conductivity. SALTIRSOIL calculates the soil water balance and soil solution concentration over the year. A second module, SALSOLCHEM, calculates the inorganic ion composition of the soil solution at equilibrium with soil calcite and gypsum at the soil’s CO2 partial pressure. Results from comparing predicted and experimentally determined concentrations, observations and predictions of pH, alkalinity and calcium concentration in calcite‐saturated solutions agree to the second significant figure; in gypsum‐saturated solutions the standard difference between observations and predictions is <3% in absolute values. The algorithms in SALTIRSOIL have been verified and SALSOLCHEM validated for the reliable calculation of soil salinity, sodicity and alkalinity at water saturation in well‐drained irrigated lands. In simulations for horticultural crops in southeast Spain, soil solution concentration factors at water saturation, quotients of electrical conductivity (EC25) at saturation to electrical conductivity in the irrigation water, and quotients of sodium adsorption ratio (SAR) are very similar to average measured values for the area.  相似文献   
116.
藏北高原退化高寒草甸土壤团聚体有机碳变化特征   总被引:1,自引:0,他引:1  
采用湿筛法对藏北高原退化高寒草甸表层(0~10cm)、亚表层(10~20cm)土壤团聚体有机碳及其变化进行了研究。结果表明,高原冷湿环境中退化草地表层、亚表层SAOC的下降幅度随草地退化加剧均趋于显著提高,轻度、严重退化草地表层各粒级SAOC降幅均明显高于亚表层;草地退化缩小了不同土层间SAOC含量的差异,草地退化程度越高则表层、亚表层间SAOC含量的差异越小,退化草地大团聚体(0.25mm)SOC、微团聚体(0.25mm)SOC含量的土层分布亦呈相同趋势。轻度退化草地不同土层大团聚体SOC降幅均较高,严重退化草地不同土层微团聚体SOC降幅则较高;正常草地、轻度退化草地、严重退化草地表层大团聚体SOC/微团聚体SOC比值分别为0.95,0.87,1.55,亚表层分别为0.96,0.72,2.33,表明轻度、严重退化草地中大团聚体SOC含量随土层加深分别更趋下降、更趋提高。退化草地表层、亚表层SAOC贡献率在总体上亦均按2~0.25 mm,2 mm,0.25~0.053mm,0.053mm的顺序依次大幅降低,表明不同土层大团聚体SOC贡献率均较高。土壤团聚体与SAOC、SOC与SAOC间的关系受草地退化程度的影响。  相似文献   
117.
There is a growing recognition for the need to develop sensitive indicators of soil quality that reflect the effects of land management on soil and assist land users in promoting sustainability of agro-ecosystems. Three soil enzymes (dehydrogenase, phosphatase and invertase) microbial biomass as biological variables and soil organic matter content (SOM) were investigated relative to fertilization and soil fertility (estimated by crop yield) at a long-term fertilization trial (Keszthely, Hungary). 0-34.7-69.4-104.1t farmyard manure (FYM) ha m 1 5 yr m 1 and the corresponding amount of mineral fertilizers (NPK) were applied in two different crop rotation systems. There were four straw and/or stalk incorporating treatments in the second crop rotation 'B'. Enzyme activities, microbial biomass and the amount of SOM were generally higher in the fertilized soils than in the unfertilized soils. The type of amendments (mineral, FYM or mixed) had significant effects only on the amount of SOM. The correlations among the biological variables and the crop yield were generally low (r < 0.250. The differences in field management resulted only in the invertase activity.  相似文献   
118.
In Hungary, maize is grown on 1 million ha and occupies more than 20% of the arable land. The rich assortment of maize cultivars of different vegetation periods and different responses to nutritional effects, water supply etc. gives the growers the possibility to choose the cultivars suiting best the site characteristics (Jolânkai et al. 1999). Among the cereals maize has the highest genetical potential. To utilize its yield and quality potential, soil types of high nutrient content and regular nutrient supply are required (Gyõrffy, 1979). Both over‐ and under‐fertilization have an unfavourable effect on the yield and quality of maize (Debreczeni, 1985). Crops can be supplied with the appropriate nutrient amounts only with the knowledge of soil characteristics in the different agro‐ecological regions (nutrient content, water supply, soil compactness, pH, nutrient supplying capacity etc.). In Hungary, a network of long‐term field fertilization trials with uniform fertilizer treatments has been maintained at nine experimental sites representing different agro‐ecological regions of the country. This experimental network gives a basis to test the nutrient responses of our main crops and calibrate their optimal nutrient supply (Kismányoky, 1991).  相似文献   
119.

Trials were performed with early and semi-early potatoes to test the effects of nitrogen (N) fertilizer level (0-160 kg N ha-1) and timing (all at planting versus half then and half either soon after emergence or 3 weeks later). All seven trials with earlies were irrigated as required, whilst different irrigation regimes (moderate versus intensive) were compared in two trials with semi-earlies. No benefit was derived from splitting the N application. Haulm growth and N uptake increased in all cases almost linearly up to the highest N level, but tuber yield did not respond in the same way. The optimum N level was 80 kg N ha-1 for a yield of 15 Mg ha-1, rising to 120 kg N ha-1 for a yield of 40 Mg ha-1. Tuber quality was lowered by the use of excess N fertilizer, particularly in the case of earlies. The quantity of mineralised N present in the soil after harvest rose sharply with above optimum fertilizer use, and the amount of N present in crop residues also increased. The likely leaching after early potatoes was estimated to be up to 80 kg N ha-1. The proportion of fertilizer N which was not accounted for in either tuber yield, crop residues or mineral N in soil was 26% in earlies and 38% in semi-earlies.  相似文献   
120.
A field calibration experiment was carried out on salt‐affected clayey soil in Syria, to compare the sensitivity to soil electrical conductivity (ECe), and bulk density (ρb) of two instruments for estimating soil moisture: the neutron probe (NP) and the Diviner 2000 capacitance probe (CP). The results showed that the values of the correlation coefficient of the calibration were decreased when the ECe and ρb values increased; this decrease was more pronounced for the Diviner 2000, indicating that it was more sensitive to ρb and ECe than the NP. When only scaled frequency was used in the fitted equation, the Diviner 2000 in wet soil underestimated soil water content significantly at all depths, but especially in the top layer, by up to 0.09 cm3/cm3 compared with gravimetric determinations. However, in dry soil, the Diviner 2000 overestimated the volumetric water content by up to 0.05 cm3/cm3 in the top 15 cm, and by 0.03 cm3/cm3 at 30‐45 cm depth. The performance of the neutron probe was better overall; using a factory calibration curve no significant differences were observed between NP estimates and the gravimetric values. Including both ρb and ECe in the calibration equations improved the fits, although the regression coefficient (R2) for the Diviner 2000 remained low.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号